CALCULATION FOR TRONA ORE INJECTION RATE

The following is an example calculation to illustrate the Trona ore injection rate. This value is estimated based on a given normalized stoichiometric ratio (NSR). Note that the injection rate illustrated in this calculation is slightly different, likely due to rounding error, than the values calculated using the Excel spreadsheet.

- 1. DESIGN INPUTS
- 1.1 Each Unit's fuel firing rate is 7047 10⁶ Btu/hr.
- 1.2 Sulfur in the fuel is 1.72 lb SO₂/10⁶ Btu.
- 1.3 For 80% SO₂ Removal:
- 1.3.1 NSR is 3.00
- 2. ASSUMPTIONS
- 2.1 Trona calcination in the flue gas is complete and follows the equation:

$$2(\text{Na}_2\text{CO}_3 + \text{NaHCO}_3 + 2\text{H}_2\text{O})_{\text{(Trona solid)}} + \text{Heat} \rightarrow \text{3Na}_2\text{CO}_{3\,(s)} + 5\text{H}_2\text{O}_{\,(g)} + \text{CO}_{2\,(g)} + 2\text{CO}_{2\,(g)} + 2\text{$$

- 2.2 The injected Trona ore is 98 wt% sodium sesquicarbonate and 2 wt% inerts. The inerts are solid and do not react.
- 2.3 The calcined Trona reacts with SO₂ in the flue gas per the following reaction:

$$Na_{2}CO_{3\,(s)} + SO_{2\,(g)} + \frac{1}{2}O_{2\,(g)} \rightarrow \ Na_{2}SO_{4\,(s)} + \ CO_{2\,(g)}$$

- 2.4 Two moles of sodium in one mole of Na₂CO₃
- 2.5 One mole of reacted SO₂ produces one mole of CO₂
- 2.6 Two moles of Na react with one mole of SO₂
- 2.7 NSR is defined as:

On a molar basis:

NSR =
$$\frac{\frac{\text{(moles of sodium injected)}}{\text{(moles of SO, entering system)}}}{\frac{\text{(moles of sodium theoretically needed)}}{\text{(to react with a mole of acid gas)}}} \leftarrow \text{"Numerator"}$$

For SO₂:

For an NSR of 1, 2.38 (exactly) lbs of Trona is required to react with a lb of SO₂ gas

Nebraska Public Power District Gerald Gentleman Station

Calculation

Numerator:

$$\frac{2.38 \, lb \, Trona}{lb \, SO_2} \, \frac{mole \, Trona}{226 \, lb \cdot mole} \, \frac{64.07 \, lb \cdot mole}{mole \, SO_2} \, \frac{3 \, moles \, Na}{mole \, Trona} = \frac{2.02 \, moles \, Na}{moles \, SO_2}$$

$$1 = \frac{2.02 \text{ moles Na}}{\text{moles SO}_2}$$

$$\frac{\text{(moles of sodium theoretically needed)}}{\text{(to react with a mole of acid gas)}}$$

Denominator: ~2.

- = theoretical moles of sodium (Na) required to react with a mole of acid gas
- = constant of ~2 for SO₂

3. CALCULATIONS

3.1 For 80% SO₂ Removal:

Mass flow rate of SO_2 = 1.72*7,047 = 12,121 lb/hr Molar flow rate of SO_2 = 12,121/64 = 190 lb/lb-mol Molar flow rate of Na = 3.00*2*190 = 1,137 lb-mol/hr Molar flow rate of Trona = 1,137/3 = 379 lb-mol/hr Mass flow rate of Trona = 379*226 = 85,604 lb/hr Mass flow rate of Trona ore (including inerts) = 85,604/0.98 = 87,350 Mass flow rate of Trona ore (including inerts) = (87,350*8,760*0.80)/2000 = 306,076 ton/yr

(Mass flow rate of Inerts = 87,350-85,604 = 1,746 lb/hr)